4.0 Article

Neurocognitive testing in a murine model of mucopolysaccharidosis type IIIA

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ymgmr.2023.100985

关键词

Mouse model; Lysosomal storage disorder; Sanfilippo A syndrome; Neurobehaviour; Mucopolysaccharidosis

向作者/读者索取更多资源

In this study, a set of behavior tests were evaluated for their reliability in assessing disease progression in the MPS IIIA mouse model. The results showed that the water cross-maze, hind-limb gait, nest building, and burrowing tests are promising assessments that accurately reflect the disease progression in MPS IIIA mice and mimic the human disease.
Mucopolysaccharidosis type IIIA (MPS IIIA) is an inherited metabolic disorder caused by a lysosomal enzyme deficiency resulting in heparan sulphate (HS) accumulation and manifests with a progressive neurodegenerative phenotype. A naturally occurring MPS IIIA mouse model is invaluable for preclinical evaluation of potential treatments but the ability to effectively assess neurological function has proved challenging. Here, the aim was to evaluate a set of behaviour tests for their reliability in assessing disease progression in the MPS IIIA mouse model. Compared to wild-type (WT) mice, MPS IIIA mice displayed memory and learning deficits in the water crossmaze from mid-stage disease and locomotor impairment in the hind-limb gait assessment at late-stage disease, supporting previous findings. Declined wellbeing was also observed in the MPS IIIA mice via burrowing and nest building evaluation at late-stage disease compared to WT mice, mirroring the progressive nature of neurological disease. Excessive HS accumulation observed in the MPS IIIA mouse brain from 1 month of age did not appear to manifest as abnormal behaviours until at least 6 months of age suggesting there may be a threshold of HS accumulation before measurable neurocognitive decline. Results obtained from the open field and three-chamber sociability test are inconsistent with previous studies and do not reflect MPS IIIA patient disease progression, suggesting these assessments are not reliable. In conclusion, water cross-maze, hind-limb gait, nest building and burrowing, are promising assessments in the MPS IIIA mouse model, which produce consistent results that mimic the human disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据