4.6 Article

Automatic classification of electrospun fiber polarized light images using mueller matrix depolarization parameter

期刊

FRONTIERS IN PHYSICS
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphy.2023.1264850

关键词

polarized light imaging; electrospun fibers; automatic classification; mueller matrix; depolarization parameter

向作者/读者索取更多资源

In this study, we obtained polarization images of different forms of electrospun fibers using polarized light microscopy and explored an automatic classification method based on Mueller matrix depolarization parameter. Our proposed method, utilizing transfer learning and convolutional neural networks, outperformed conventional approaches and showed high accuracy and practicality in the classification of electrospun fibers.
Electrospun fibers are widely used in various fields of biology, medicine, and chemistry due to their unique morphological characteristics that determine their distinct application properties. Accurate and rapid classification of these fibers based on their morphology is critical for their effective utilization. Non-destructive and low-cost imaging methods are highly desirable for this purpose, so we obtained the polarization images of different forms of electrospun fibers (smooth surfaces, microporous, and beaded microspheres) by polarized light microscopy. In this study, we have explored the automatic classification of electrospun fibers based on their Mueller matrix depolarization parameter, which is highly correlated with the rough microporous structures on the surface of the object. To achieve this, we employed transfer learning and various convolutional neural networks (CNNs). Our proposed method outperformed the conventional approach that only utilizes a single Mueller matrix M44 image for classification, thus enabling researchers to effectively classify electrospun fibers. Given the high accuracy of our method, it may find significant utility in fields such as material science, nanotechnology, and bioengineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据