4.7 Article

Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses

期刊

NATURE NEUROSCIENCE
卷 19, 期 7, 页码 915-925

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.4313

关键词

-

资金

  1. NIH NIDA [DA035805, MH101147, DA008227, DA014133, DA023206, DA034856, DA040620]
  2. Pennsylvania Department of Health

向作者/读者索取更多资源

Exposures to cocaine and morphine produce similar adaptations in nucleus accumbens (NAc)-based behaviors, yet produce very different adaptations at NAc excitatory synapses. In an effort to explain this paradox, we found that both drugs induced NMDA receptor containing, AMPA receptor-silent excitatory synapses, albeit in distinct cell types through opposing cellular mechanisms. Cocaine selectively induced silent synapses in D1-type neurons, likely via a synaptogenesis process, whereas morphine induced silent synapses in D2-type neurons via internalization of AMPA receptors from pre-existing synapses. After drug withdrawal, cocaine-generated silent synapses became 'unsilenced'by recruiting AMPA receptors to strengthen excitatory inputs to D1-type neurons, whereas morphine-generated silent synapses were likely eliminated to weaken excitatory inputs to D2-type neurons. Thus, these cell type specific, opposing mechanisms produced the same net shift of the balance between excitatory inputs to D1- and D2-type NAc neurons, which may underlie certain common alterations in NAc-based behaviors induced by both classes of drugs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据