4.7 Article

Hippocampal global remapping for different sensory modalities in flying bats

期刊

NATURE NEUROSCIENCE
卷 19, 期 7, 页码 952-958

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.4310

关键词

-

资金

  1. European Research Council (ERC - NEUROBAT)
  2. Human Frontiers Science Program (HFSP) [RGP0062/2009-C]
  3. Israel Science Foundation (ISF) [1017/08, 1319/13]
  4. Minerva Foundation
  5. Howard Hughes Medical Institute

向作者/读者索取更多资源

Hippocampal place cells encode the animal's spatial position. However, it is unknown how different long-range sensory systems affect spatial representations. Here we alternated usage of vision and echolocation in Egyptian fruit bats while recording from single neurons in hippocampal areas CA1 and subiculum. Bats flew back and forth along a linear flight track, employing echolocation in darkness or vision in light. Hippocampal representations remapped between vision and echolocation via two kinds of remapping: subiculum neurons turned on or off, while CA1 neurons shifted their place fields. Interneurons also exhibited strong remapping. Finally, hippocampal place fields were sharper under vision than echolocation, matching the superior sensory resolution of vision over echolocation. Simulating several theoretical models of place-cells suggested that combining sensory information and path integration best explains the experimental sharpening data. In summary, here we show sensory-based global remapping in a mammal, suggesting that the hippocampus does not contain an abstract spatial map but rather a 'cognitive atlas', with multiple maps for different sensory modalities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据