4.8 Article

Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography

期刊

NATURE NANOTECHNOLOGY
卷 11, 期 6, 页码 545-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2016.25

关键词

-

资金

  1. Office of Basic Energy Sciences of the US Department of Energy [DE-FG02-06ER46293]
  2. National Science Foundation (NSF) [CMMI 1436375, PHYS 0848797]
  3. Cariplo project UMANA [2013-0735]
  4. Cariplo project MAGISTER [2013-0726]
  5. Ministero Italiano dell'Universita e della Ricerca (MIUR) [2010ECA8P3]
  6. Basque Government [PI_2015_1_19]
  7. Spanish Ministry of Economy Competitiveness [BES-2013-063690]
  8. Direct For Mathematical & Physical Scien
  9. Division Of Physics [1205878] Funding Source: National Science Foundation
  10. Div Of Civil, Mechanical, & Manufact Inn
  11. Directorate For Engineering [1618941] Funding Source: National Science Foundation
  12. U.S. Department of Energy (DOE) [DE-FG02-06ER46293] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据