4.6 Article

Breast Cancer Diagnosis Based on IoT and Deep Transfer Learning Enabled by Fog Computing

期刊

DIAGNOSTICS
卷 13, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/diagnostics13132191

关键词

breast cancer diagnosis; Fog computing; IoT; convolutional neural network (CNN); deep transfer learning (DTL)

向作者/读者索取更多资源

Women across all countries are at the highest risk of breast cancer. Early diagnosis and staging can improve treatment outcomes. Technology enables automatic analysis of medical images, while IoT is crucial for early and remote diagnosis. This study trained a deep transfer learning model using mammography images for autonomous breast cancer diagnosis.
Across all countries, both developing and developed, women face the greatest risk of breast cancer. Patients who have their breast cancer diagnosed and staged early have a better chance of receiving treatment before the disease spreads. The automatic analysis and classification of medical images are made possible by today's technology, allowing for quicker and more accurate data processing. The Internet of Things (IoT) is now crucial for the early and remote diagnosis of chronic diseases. In this study, mammography images from the publicly available online repository The Cancer Imaging Archive (TCIA) were used to train a deep transfer learning (DTL) model for an autonomous breast cancer diagnostic system. The data were pre-processed before being fed into the model. A popular deep learning (DL) technique, i.e., convolutional neural networks (CNNs), was combined with transfer learning (TL) techniques such as ResNet50, InceptionV3, AlexNet, VGG16, and VGG19 to boost prediction accuracy along with a support vector machine (SVM) classifier. Extensive simulations were analyzed by employing a variety of performances and network metrics to demonstrate the viability of the proposed paradigm. Outperforming some current works based on mammogram images, the experimental accuracy, precision, sensitivity, specificity, and f1-scores reached 97.99%, 99.51%, 98.43%, 80.08%, and 98.97%, respectively, on the huge dataset of mammography images categorized as benign and malignant, respectively. Incorporating Fog computing technologies, this model safeguards the privacy and security of patient data, reduces the load on centralized servers, and increases the output.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据