4.6 Article

Sustainable and Green Synthesis of Iron Nanoparticles Supported on Natural Clays via Palm Waste Extract for Catalytic Oxidation of Crocein Orange G Mono Azoic Dye

期刊

ACS OMEGA
卷 8, 期 38, 页码 34364-34376

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.3c01333

关键词

-

向作者/读者索取更多资源

In this study, an innovative green catalyst was used for the removal of Crocein Orange G dye from aqueous solution. The clay bentonite El Hamma-supported nanoscale zero-valent iron was employed as a heterogeneous Fenton-like catalyst, and palm waste extract was used for the synthesis of the catalyst. The results showed that this catalyst achieved total degradation of the dye within 180 minutes, and the degradation efficiency remained high even after three successive runs. This study provides a sustainable and effective method for azoic dye removal from industrial wastewaters.
In this study, the removal of Crocein Orange G dye (COG) from aqueous solution was investigated using an innovative green catalyst to overcome problems with chemical techniques. Clay bentonite El Hamma (HB)-supported nanoscale zero-valent iron (NZVI) was used as a heterogeneous Fenton-like catalyst for the oxidation of harmful COG. Palm waste extract was herein used as a reducing and capping agent to synthesize NZVI, and HB clay was employed, which was obtained from the El Hamma bentonite deposit in the Gabes province of Tunisia. HB and HB-NZVI were characterized by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), X-ray diffraction (XRD), and zeta potential. Under optimal conditions, total degradation of COG was attained within 180 min. Kinetic studies showed that the dye degradation rate followed well the pseudo-second-order model. The apparent activation energy was 33.11 kJ/mol, which is typical of a physically controlled reaction. The degradation pathways and mineralization study revealed that the adsorption-Fenton-like reaction was the principal mechanism that demonstrated 100% degradation efficiency of COG even after three successive runs. Obtained results suggest that HB-NZVI is an affective heterogeneous catalyst for the degradation of COG by H2O2 and may constitute a sustainable green catalyst for azoic dye removal from industrial wastewaters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据