4.6 Article

Exploring the 5-Substituted 2-Aminobenzothiazole-Based DNA Gyrase B Inhibitors Active against ESKAPE Pathogens

期刊

ACS OMEGA
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.3c01930

关键词

-

向作者/读者索取更多资源

We have developed a new series of DNA gyraseB inhibitors based on 2-aminobenzothiazole, showing promising activity against ESKAPE bacterial pathogens. The chemical space of the benzothiazole-based series was expanded to the C5 position of the benzothiazole ring, resulting in compound E with low nanomolar inhibition of DNA gyrase and broad-spectrum antibacterial activity. Computational analysis revealed that substitution at position C5 can enhance the inhibitory potency of the compounds and modify their physicochemical properties.
We present a new series of 2-aminobenzothiazole-basedDNA gyraseB inhibitors with promising activity against ESKAPE bacterial pathogens.Based on the binding information extracted from the cocrystal structureof DNA gyrase B inhibitor A, in complex with Escherichia coli GyrB24, we expanded the chemicalspace of the benzothiazole-based series to the C5 position of thebenzothiazole ring. In particular, compound E showedlow nanomolar inhibition of DNA gyrase (IC50 < 10 nM)and broad-spectrum antibacterial activity against pathogens belongingto the ESKAPE group, with the minimum inhibitory concentration <0.03 & mu;g/mL for most Gram-positive strains and 4-16 & mu;g/mLagainst Gram-negative E. coli, Acinetobacter baumannii, Pseudomonasaeruginosa, and Klebsiella pneumoniae. To understand the binding mode of the synthesized inhibitors, acombination of docking calculations, molecular dynamics (MD) simulations,and MD-derived structure-based pharmacophore modeling was performed.The computational analysis has revealed that the substitution at positionC5 can be used to modify the physicochemical properties and antibacterialspectrum and enhance the inhibitory potency of the compounds. Additionally,a discussion of challenges associated with the synthesis of 5-substituted2-aminobenzothiazoles is presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据