4.8 Article

Conductive MOF electrodes for stable supercapacitors with high areal capacitance

期刊

NATURE MATERIALS
卷 16, 期 2, 页码 220-224

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT4766

关键词

-

资金

  1. Center for Excitonics, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001088]
  2. BMW
  3. Skoltech Center for Electrochemical Energy Storage
  4. National Science Foundation under NSF [ECS-0335765]
  5. US Department of Energy-Basic Energy Sciences
  6. Canadian Light Source
  7. Advanced Photon Source
  8. US DOE [DE-AC02-06CH11357]

向作者/读者索取更多资源

Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles'. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs4-9. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs)(10). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni-3(2,3,6,7,10,11-hexaiminotriphenylene)(2) (Ni-3(HITP)(2)), a MOF with high electrical conductivity(11), can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据