4.8 Article

Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques

期刊

NATURE MATERIALS
卷 15, 期 3, 页码 335-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/nmat4519

关键词

-

资金

  1. Kowa Company
  2. National Institutes of Health [R01HL114805, R01HL109506]
  3. Harvard Catalyst Advanced Microscopy Pilot Award
  4. Harvard Clinical and hfranslational Science Center (National Center for Research Resources)
  5. Harvard Clinical and hfranslational Science Center (National Center for Advancing Translational Sciences, National Institutes of Health) [TR001102]
  6. Harvard University
  7. Imperial College London
  8. [R0111L80472]

向作者/读者索取更多资源

Clinical evidence links arterial calcification and cardiovascular risk. Finite -element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high -resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque's collagen content-two determinants of atherosclerotic plaque stability-are interlinked.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据