4.7 Article

Peroxymonosulfate-based photodegradation of naproxen by stimulating (Mo, V, and Zr)-carbide nanoparticles

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jwpe.2023.104027

关键词

Photocatalytic; Photo-piezocatalytic; Degradation; Peroxymonosulfate; Active radicals; Naproxen

向作者/读者索取更多资源

Molybdenum carbide (Mo2C), vanadium carbide (VC), and zirconium carbide (ZrC) nanoparticles were studied as photocatalysts for the degradation of naproxen (NX) under visible light. ZrC nanoparticles exhibited higher photocatalytic properties compared to VC and Mo2C nanoparticles. The larger surface area, mesoporous structure, narrow energy bandgap, and lower recombination intensity of ZrC nanoparticles contributed to the enhanced degradation of NX. The excellent durability and reusability of ZrC nanoparticles were also demonstrated.
Molybdenum carbide (Mo2C), vanadium carbide (VC), and zirconium carbide (ZrC) nanoparticles (NPs) were investigated systematically as photocatalysts for the stimulation of peroxymonosulfate (PMS) for the degradation of naproxen (NX) under visible light. Characterizations of the samples by XRD, XPS, SEM, UV/PL, and BET were performed. In particular, the impact of exogenous variables on NX degradation was thoroughly and methodically investigated. 80.47 % of NX was decomposed over 60 min with 0.75 g/L PMS and ZrC at pH 3. ZrC NPs showed higher photocatalytic/photo-piezocatalytic properties in the degradation of NX compared to VC and Mo2C NPs. The substantial rise in the reaction rate of NX in ZrC/PMS-based photo-degradation can be attributed to the larger surface area, mesoporous, narrow energy bandgap (Eg), and lower intensity of photoelectrons and holes recombining of ZrC NPs. Due to their substantial photocatalytic efficacy and significant piezo-photocatalytic properties, all NPs are viable candidates for piezo-photocatalytic/photocatalytic degradation. The degradation of NX was then seen in the active species scavenging studies, in which sulfate radicals, hydroxyl radicals, holes, and superoxide radicals were involved. According to continuous cycle studies, the ZrC NPs also had excellent durability and reusability. Additionally, the potential paths for NX degradation were proposed based on the study of LC-MS, and the degradation mechanism of NX was clarified. Based on the superior stability and reusability of ZrC NPs after 5 successive cycles, this material is anticipated to be utilized in the future for the treatment of wastewater, containing pharmaceuticals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据