4.7 Review

Research progress of seasonal thermal energy storage technology based on supercooled phase change materials

期刊

JOURNAL OF ENERGY STORAGE
卷 67, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2023.107378

关键词

Phase change materials; Solar energy; Seasonal thermal energy storage; Stable supercooling; Trigger crystallization

向作者/读者索取更多资源

Seasonal thermal energy storage (STES) is a crucial system for achieving low and zero carbon emissions by storing and utilizing thermal energy using different types of storage media. Phase change materials (PCMs) have shown great potential in STES, but their inherent defects such as low thermal conductivity and phase separation limit their further development. However, in the context of STES, the supercooling of PCMs becomes beneficial. Thus, future research should focus on finding stable supercooling PCMs, designing trigger crystallization devices, and developing high-performance STES systems.
Seasonal thermal energy storage (STES) is a highly effective energy-use system that uses thermal storage media to store and utilize thermal energy over cycles, which is crucial for accomplishing low and zero carbon emissions. Sensible heat storage, latent heat storage, and thermochemical heat storage are the three most prevalent types of seasonal thermal energy storage. In recent years, latent heat storage based on phase change materials(PCMs) has made great progress in solar energy utilization. However, the inherent defects of phase change materials have become resistant, limiting their further development, including low thermal conductivity, phase separation, and susceptibility to leakage. Supercooling is frequently considered a negative to be avoided in short-term usage. In seasonal thermal energy storage, however, supercooling of PCMs becomes an advantage. The paper begins with a brief overview of existing methods of seasonal thermal energy storage. Afterward, a brief description of the research on PCMs capable of storing seasonal heat is provided. A detailed discussion of the current state of research into supercooled PCMs for seasonal thermal energy storage and systems is presented. Finally, we present a detailed outline of the future directions of seasonal thermal energy storage using PCMs. According to current researches, finding and preparing PCMs with stable supercooling, designing suitable trigger crystallization devices and seasonal thermal energy storage systems with high performance will be the three directions for future research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据