4.7 Article

A new path to high-performance supercapacitors: Utilizing Ag-embedded CoFe-phosphate and Ti3C2 MXene as hybrid electrodes

期刊

JOURNAL OF ENERGY STORAGE
卷 72, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2023.108272

关键词

CFPAg; Asymmetric device; Hydrothermal route

向作者/读者索取更多资源

This study addresses the issue of poor performance in assembled supercapacitor devices, which is attributed to the slow kinetics and structural instability of positive electrodes and the lower capacitance of carbon-based negative electrodes. To solve this challenge, the authors propose a sustainable solution using Ag-embedded CoFe-phosphate (CFPAg) and Ti3C2 MXene as positive and negative electrodes, respectively, to create a hybrid supercapacitor (HS) device. The CFPAg electrode shows a specific capacity of 1021 mF/cm2 with 80.5% cyclic stability over 10,000 cycles, while the MXene electrode displays a specific capacity of 177.6 mF/cm2 with a cyclability of 84.7% over 10,000 cycles. The HS device fabricated using CFPAg and MXene electrodes exhibits an areal capacitance of 79.6 mF/cm2 and provides excellent cyclic stability of 96% over approximately 39,000 cycles. It also demonstrates a high energy density of 24.7 μWh/cm2 at a power density of 0.75 mW/cm2 when measured at 2 mA/cm2 applied current density. This work serves as a foundation for developing a range of electrode materials for next-generation energy storage devices, providing a sustainable and effective solution to improve supercapacitor device performance and longevity.
This study addresses the issue of poor performance in assembled supercapacitor devices, which is attributed to the slow kinetics and structural instability of positive electrodes and the lower capacitance of carbon-based negative electrodes. To address this challenge, the authors propose a sustainable solution that involves using Ag-embedded CoFe-phosphate (CFPAg) and Ti3C2 MXene as positive and negative electrodes, respectively, to create a hybrid supercapacitor (HS) device. The CFPAg electrode, made up of porous nanoflakes decorated with nanospheres of CoFe-phosphate material, is deposited on Ni-foam without the need of a binder, using a simple hydrothermal method. The MXene electrode is chemically synthesized and deposited on Ni-foam as the negative electrode. The results of the electrochemical study show that the CFPAg electrode exhibits a specific capacity of 1021 mF/cm2 with 80.5 % cyclic stability over 10,000 cycles, while the MXene electrode shows a specific ca-pacity of 177.6 mF/cm2 with a cyclability of 84.7% over 10,000 cycles. The HS device, fabricated using CFPAg and MXene electrodes, displays an areal capacitance of 79.6 mF/cm2 and provides excellent cyclic stability of 96% over approximately 39,000 cycles. It also exhibits a high energy density of 24.7 & mu;Wh/cm2 at a power density of 0.75 mW/cm2 when measured at 2 mA/cm2 applied current density. This work serves as a foundation for developing a range of electrode materials for next-generation energy storage devices, providing a sustainable and effective solution to improve supercapacitor device performance and longevity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据