4.7 Article

Effect of TiO2 nanoparticles on the thermal energy storage of HITEC salt for concentrated solar power applications

期刊

JOURNAL OF ENERGY STORAGE
卷 72, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2023.108449

关键词

Thermal energy storage; Concentrated solar power; Nanoenhanced molten salt; Latent heat; Upper working temperature

向作者/读者索取更多资源

This research synthesized a novel composite of Titanium Dioxide nanoparticles and the ternary nitrate molten salt (HITEC), which, when added at a concentration of 0.1 wt%, significantly enhanced the specific heat capacity, latent heat, and upper working temperature of HITEC. The nanocomposite also exhibited excellent thermal cycling stability and chemical stability.
Thermal energy storage materials are substantial in concentrated solar power (CSP) plants as they absorb solar thermal energy and store it to be used for electricity production. Enhancing the thermophysical properties of these materials will positively affect the efficiency of the CSP plant system and lower electricity price. This research synthesized a novel composite of Titanium Dioxide (TiO2) nanoparticles and the ternary nitrate molten salt (HITEC) at different nanoparticle concentrations. The nano-enhanced molten salt (NEMS) samples were characterized for compatibility and nanostructure analysis. Also, the thermophysical properties and thermal cycling behaviour of the NEMS samples were evaluated. The results indicate that 0.1 wt% can enhance the specific heat capacity of HITEC by 5.5 %, latent heat by 78 %, and upper working temperature by 5 %. The morphological analysis of the 0.1 wt% NEMS sample revealed a good dispersion of nanoparticles in HITEC and the formation of nanostructures. The FT-IR analysis showed the chemical stability of the nanofluid with no presence of chemical reaction between its components. The thermal cycling test of the optimum sample showed the chemical stability of the nanocomposite and the thermal cycling stability of the enhanced thermophysical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据