4.7 Review

Advancements in MXene-polymer composites for high-performance supercapacitor applications

期刊

JOURNAL OF ENERGY STORAGE
卷 63, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2023.106942

关键词

MXene; Energy storage devices; Supercapacitors; Polymer composites; 2D materials

向作者/读者索取更多资源

State-of-the-art supercapacitors based on MXene and polymer composites offer an innovative approach to enhance electrochemical performance. MXene, a 2D material, exhibits exceptional electrochemical attributes and metallic conductivity. However, the restacking nature of MXene layers limits electrolyte penetration and ion adsorption/desorption. This review discusses the harnessing techniques and properties of MXene and polymer-based composites, as well as their applications in supercapacitors.
State-of-the-art energy storage devices have gained much attraction owing to the high demand for electronic appliances, electric vehicles and automobile applications. In this context, supercapacitors are emerging electrochemical energy storage models (EESMs) that have been demonstrated to bridge the gap between capacitors and conventional battery systems based on their distinctively high-power density, first-rate cycle stability, and rapid charge-discharge rate capability. Due to their excellent energy density and mobility, 2D materials are widely utilized to architect electrode materials for supercapacitor applications. MXene, a novel kind of 2D material, has gained tremendous attention due to its exceptional electrochemical attributes imitative from its transition metal nitride/carbide/carbonitride components and metallic electrical conductivity. Despite the excellent results of employing MXenes and their composites in energy storage devices, the restacking nature of MXene layers restricts the penetration of electrolytes and further decreases the utilization of MXene's ion adsorption/desorption sites. As a result, the development of MXene polymer composites offers an innovative approach that inhibits the restacking of MXene sheets and introduces functionalization, thereby enhancing the material's electrochemical performance. This review focuses on MXene and its polymer-based composite materials to architect supercapacitors for energy storage devices. We also summarized the different harnessing techniques of MXene and polymers followed by the various properties, such as structural, electrical, thermal, mechanical, etc. In addition, applications of MXene and polymer materials related to supercapacitors, along with future challenges and outcomes, are also explained comprehensively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据