4.7 Article

Precisely tuning porosity and outstanding supercapacitor performance of phenolic resin-based carbons via citrate activation

期刊

JOURNAL OF ENERGY STORAGE
卷 67, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2023.107610

关键词

Resin carbon; Hierarchical porous structure; Pore distribution; Citrate; Supercapacitor

向作者/读者索取更多资源

A novel hierarchical porous carbon material with high electrochemical performance is developed using an inexpensive and efficient two-step carbonization process with self-made phenolic resin and the introduction of citrate as the key. This material exhibits large specific surface area, high nitrogen content, outstanding specific capacitance, and ultrahigh energy densities in different electrolytes. Its excellent rate capability and cycle stability make it a promising candidate for energy storage applications.
Developing a facile, inexpensive, and efficient approach for preparing porous carbon materials with high electrochemical properties is critical to the commercial viability of supercapacitors (SCs). Herein, a novel hierarchical porous carbon with extraordinary SCs performance is developed via a two-step carbonization process by employing low-temperature self-made phenolic resin as raw materials. Therein, the introduction of citrate is the key to generate distinct configurations and obtain high electrochemical properties. Particularly, the potassium citrate and sodium citrate (mass ratio of 3:1) activated sample (RFN-KNa) exhibits large specific surface area (1089.78 m2 g-1), high nitrogen content (2.91 at.%) and outstanding specific capacitance (280 F g-1 at 1 A g-1). Additionally, the RFN-KNa-based symmetric SCs also possesses ultrahigh energy densities, which are found to be 24.79 Wh kg-1 (at 900.1 W kg-1) and 17.42 Wh kg-1 (at 703.4 W kg-1) in 1 M Na2SO4 and 6 M KOH electrolyte, respectively. Meanwhile, the SCs also displays eminent rate capability and cycle stability. This work offers a new insight for preparing hierarchical porous carbon materials and opens up a new avenue for applying resin materials in the field of energy storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据