4.6 Review

Advances in the application of CRISPR-Cas technology in rapid detection of pathogen nucleic acid

期刊

FRONTIERS IN MOLECULAR BIOSCIENCES
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmolb.2023.1260883

关键词

CRISPR-Cas; Cas9; Cas12; Cas13; Cas14; pathogen nucleic acid; rapid detection

向作者/读者索取更多资源

CRISPR-Cas technology is a widely used gene editing tool in biology, microbiology, and other fields. It consists of highly conserved repetitive sequences and spacer sequences, and utilizes the endonuclease activity of Cas proteins, combined with signal amplification and transformation technologies, to rapidly detect pathogen nucleic acids.
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are widely used as gene editing tools in biology, microbiology, and other fields. CRISPR is composed of highly conserved repetitive sequences and spacer sequences in tandem. The spacer sequence has homology with foreign nucleic acids such as viruses and plasmids; Cas effector proteins have endonucleases, and become a hotspot in the field of molecular diagnosis because they recognize and cut specific DNA or RNA sequences. Researchers have developed many diagnostic platforms with high sensitivity, high specificity, and low cost by using Cas proteins (Cas9, Cas12, Cas13, Cas14, etc.) in combination with signal amplification and transformation technologies (fluorescence method, lateral flow technology, etc.), providing a new way for rapid detection of pathogen nucleic acid. This paper introduces the biological mechanism and classification of CRISPR-Cas technology, summarizes the existing rapid detection technology for pathogen nucleic acid based on the trans cleavage activity of Cas, describes its characteristics, functions, and application scenarios, and prospects the future application of this technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据