4.8 Article

Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss

期刊

NATURE GEOSCIENCE
卷 9, 期 11, 页码 838-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/NGEO2820

关键词

-

资金

  1. CanSISE Network
  2. Natural Science and Engineering Research Council of Canada (NSERC) under the Climate Change and Atmospheric Research (CCAR) programme

向作者/读者索取更多资源

Surface air temperature over central Eurasia decreased over the past twenty-five winters at a time of strongly increasing anthropogenic forcing and Arctic amplification. It has been suggested that this cooling was related to an increase in cold winters due to sea-ice loss in the Barents-Kara Sea. Here we use over 600 years of atmosphere-only global climate model simulations to isolate the effect of Arctic sea-ice loss, complemented with a 50-member ensemble of atmosphere-ocean global climate model simulations allowing for external forcing changes (anthropogenic and natural) and internal variability. In our atmosphere-only simulations, we find no evidence of Arctic sea-ice loss having impacted Eurasian surface temperature. In our atmosphere-ocean simulations, we find just one simulation with Eurasian cooling of the observed magnitude but Arctic sea-ice loss was not involved, either directly or indirectly. Rather, in this simulation the cooling is due to a persistent circulation pattern combining high pressure over the Barents-Kara Sea and a downstream trough. We conclude that the observed cooling over central Eurasia was probably due to a sea-ice-independent internally generated circulation pattern ensconced over, and nearby, the Barents-Kara Sea since the 1980s. These results improve our knowledge of high-latitude climate variability and change, with implications for our understanding of impacts in high-northern-latitude systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据