4.6 Article

M2 Polarization and Inhibition of Host Cell Glycolysis Contributes Intracellular Survival of Salmonella Strains in Chicken Macrophage HD-11 Cells

期刊

MICROORGANISMS
卷 11, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/microorganisms11071838

关键词

chicken macrophage cell; foodborne pathogens; Salmonella; glycolysis; macrophage polarization; nitric oxide; Salmonella intracellular survival

向作者/读者索取更多资源

This study found that Salmonella infection can alter host metabolism to increase energy and metabolites for intracellular replication. Infection reduced glycolysis and enhanced mitochondrial oxidative phosphorylation in chicken macrophages, while promoting M2 polarization. These results suggest that modulation of host cell metabolism and macrophage polarization contribute to the survival of S. enteritidis.
Salmonella enterica is a group of facultative, gram-negative bacteria. Recently, new evidence indicated that Salmonella could reprogram the host metabolism to increase energy or metabolites available for intracellular replication. In this study, using a chicken-specific kinomic immunometabolism peptide array analysis, we found that infection by S. Enteritidis induced significant phosphorylation changes in many key proteins of the glycolytic pathway in chicken macrophage HD-11 cells, indicating a shift in glycolysis caused by Salmonella infection. Nitric oxide production and changes of glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) represented by extracellular acidification rate (ECAR) and oxygen consumption rate (OCR), respectively, were measured in chicken macrophages infected with three Salmonella strains (S. Enteritidis, S. Heidelberg, and S. Senftenberg). The infection reduced glycolysis and enhanced OXPHOS in chicken macrophages as indicated by changes of ECAR and OCR. Salmonella strains differentially affected macrophage polarization and glycolysis. Among three strains tested, S. Enteritidis was most effective in downregulating glycolysis and promoting M2 polarization as measured by ECAR, ORC, and NO production; while S. Senftenberg did not alter glycolysis and may promote M1 polarization. Our results suggested that downregulation of host cell glycolysis and increase of M2 polarization of macrophages may contribute to increased intracellular survival of S. Enteritidis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据