4.6 Article

Viral diversity and dynamics and CRISPR-Cas-mediated immunity in a robust alkaliphilic cyanobacterial consortium

期刊

MICROBIOLOGY SPECTRUM
卷 -, 期 -, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.02217-23

关键词

microbial ecology; phages; metagenomics; biotechnology; applied microbiology; alkaliphiles; cyanobacteria; viral dynamics; CRISPR-Cas

向作者/读者索取更多资源

This study investigates the resistance of an alkaliphilic consortium, largely composed of a cyanobacterium Candidatus Phormidium alkaliphilum, to viral predation. The results show that viral predation of the cyanobacteria in the consortium is low and does not affect the community dynamics. The study suggests that potential viruses and CRISPR-Cas-mediated immunity play an important role in the establishment and functional robustness of microbial communities.
In many industries, from food to biofuels, contamination of production systems with predators is a costly problem and requires the maintenance of sterile operating conditions. In this study, we look at the robustness of one such alkaliphilic consortium, comprised largely of a cyanobacterium Candidatus Phormidium alkaliphilum, to viral predation. This consortium has existed without a community crash for several years in laboratory and pilot-scale environments. We look at clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems and viral dynamics in this consortium at four conditions using metagenomic analyses. Results show that while there are active viral members in this community, viral predation of the cyanobacteria is low and does not affect the community dynamics. The multiple CRISPR arrays within the Phormidium were found to be static following the initial lab establishment of consortium. Multiple cryptic CRISPR-Cas systems were detected with uncertain viral protection capacity. Our results suggest that the dynamics of potential viruses and CRISPR-Cas-mediated immunity likely play an important role in the initial establishment of consortia and may continue to support the functional robustness of engineered microbial communities throughout biotechnology applications. IMPORTANCE Biotechnology applications utilizing the function of microbial communities have become increasingly important solutions as we strive for sustainable applications. Although viral infections are known to have a significant impact on microbial turnover and nutrient cycling, viral dynamics have remained largely overlooked in these engineered communities. Predatory perturbations to the functional stability of these microbial biotechnology applications must be investigated in order to design more robust applications. In this study, we closely examine virus-microbe dynamics in a model microbial community used in a biotechnology application. Our findings suggest that viral dynamics change significantly with environmental conditions and that microbial immunity may play an important role in maintaining functional stability. We present this study as a comprehensive template for other researchers interested in exploring predatory dynamics in engineered microbial communities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据