4.7 Article

Salt Stress-Induced Modulation of Porphyrin Biosynthesis, Photoprotection, and Antioxidant Properties in Rice Plants (Oryza sativa)

期刊

ANTIOXIDANTS
卷 12, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/antiox12081618

关键词

antioxidant enzymes; chlorophyll and heme biosynthesis; photoprotection; rice; salt stress

向作者/读者索取更多资源

Salt stress disrupts cellular ion homeostasis and adversely impacts plant growth and productivity. We examined the regulatory mechanisms of porphyrin biosynthesis, photoprotection, and antioxidant properties in salt-stressed rice seedlings. Our results indicate that chlorophyll and heme biosynthesis involve the protective strategies for salt stress alleviation through photoprotection by the scavenging of chlorophyll precursors and nonphotochemical quenching (NPQ) as well as activating antioxidant enzymes.
Salt stress disrupts cellular ion homeostasis and adversely impacts plant growth and productivity. We examined the regulatory mechanisms of porphyrin biosynthesis, photoprotection, and antioxidant properties in salt-stressed rice seedlings. In response to 150 mM NaCl, the rice seedlings exhibited dehydration, reduced relative water content, and increased levels of conductivity, malondialdehyde, and H2O2. The expression levels of the salt-stress-responsive genes NHX1, SOS1, and MYB drastically increased after NaCl treatment. The seedlings grown under NaCl stress displayed declines in F-v/F-m, F-PSII, rETR(max), and photochemical quenching but increases in nonphotochemical quenching (NPQ) and the expression of genes involved in zeaxanthin formation, BCH, and VDE. Under salt stress conditions, levels of chlorophyll precursors significantly decreased compared to controls, matching the downregulation of CHLD, CHLH, CHLI, and PORB. By contrast, NaCl treatment led to increased heme content at 24 h of treatment and significant upregulations of FC2, HO1, and HO2 compared to controls. Salt-stressed seedlings also increased their expression of CATs (catalases) and APXs (ascorbate peroxidases) as well as the activities of superoxide dismutase, CAT, APX, and peroxidase. Our results indicate that chlorophyll and heme biosynthesis involve the protective strategies for salt stress alleviation through photoprotection by the scavenging of chlorophyll precursors and NPQ as well as activating antioxidant enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据