4.7 Article

Preclinical Characterization of a Stabilized Gastrin-Releasing Peptide Receptor Antagonist for Targeted Cancer Theranostics

期刊

BIOMOLECULES
卷 13, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/biom13071134

关键词

prostate cancer; GRPR antagonist; theranostics; PC-3 cells; neprilysin

向作者/读者索取更多资源

This study presents a new GRPR antagonist with improved stability and specificity for the theranostics of prostate cancer. In vitro and in vivo experiments showed that the new compound demonstrated higher stability and selective targeting, indicating its potential therapeutic value.
Radiolabeled gastrin-releasing peptide receptor (GRPR) antagonists have shown great promise for the theranostics of prostate cancer; however, their suboptimal metabolic stability leaves room for improvements. It was recently shown that the replacement of Gly(11) with Sar(11) in the peptidic [D-Phe(6),Leu(13)-NHEt,des-Met(14)]BBN(6-14) chain stabilized the [Tc-99m]Tc-DB15 radiotracer against neprilysin (NEP). We herein present DOTAGA-PEG(2)-(Sar(11))RM26 (AU-RM26-M1), after Gly(11) to Sar(11)-replacement. The impact of this replacement on the metabolic stability and overall biological performance of [In-111]In-AU-RM26-M1 was studied using a head-to-head comparison with the unmodified reference [In-111]In-DOTAGA-PEG(2)-RM26. In vitro, the cell uptake of [In-111]In-AU-RM26-M1 could be significantly reduced in the presence of a high-excess GRPR-blocker that demonstrated its specificity. The cell uptake of both radiolabeled GRPR antagonists increased with time and was superior for [In-111]In-AU-RM26-M1. The dissociation constant reflected strong affinities for GRPR (500 pM for [In-111]In-AU-RM26-M1). [In-111]In-AU-RM26-M1 showed significantly higher stability in peripheral mice blood at 5 min pi (88 & PLUSMN; 8% intact) than unmodified [In-111]In-DOTAGA-PEG(2)-RM26 (69 & PLUSMN; 2% intact; p < 0.0001). The administration of a NEP inhibitor had no significant impact on the Sar(11)-compound (91 & PLUSMN; 2% intact; p > 0.05). In vivo, [In-111]In-AU-RM26-M1 showed high and GRPR-mediated uptake in the PC-3 tumors (7.0 & PLUSMN; 0.7%IA/g vs. 0.9 & PLUSMN; 0.6%IA/g in blocked mice) and pancreas (2.2 & PLUSMN; 0.6%IA/g vs. 0.3 & PLUSMN; 0.2%IA/g in blocked mice) at 1 h pi, with rapid clearance from healthy tissues. The tumor uptake of [In-111]In-AU-RM26-M1 was higher than for [In-111]In-DOTAGA-PEG(2)-RM26 (at 4 h pi, 5.7 & PLUSMN; 1.8%IA/g vs. 3 & PLUSMN; 1%IA/g), concordant with its higher stability. The implanted PC-3 tumors were visualized with high contrast in mice using [In-111]In-AU-RM26-M1 SPECT/CT. The Gly(11) to Sar(11)-substitution stabilized [In-111]In-DOTAGA-PEG(2)-(Sar(11))RM26 against NEP without negatively affecting other important biological features. These results support the further evaluation of AU-RM26-M1 for prostate cancer theranostics after labeling with clinically relevant radionuclides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据