4.7 Article

Biomolecular Minerals and Volcanic Glass Bio-Mimics to Control Adult Sand Flies, the Vector of Human Leishmania Protozoan Parasites

期刊

BIOMOLECULES
卷 13, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/biom13081235

关键词

industrial biomolecular minerals; sand flies; Imergard; Celite

向作者/读者索取更多资源

In this study, the efficacy of diatomaceous earth (DE; Celite) and a volcanic glass bio-mimic (Imergard) against sand flies was examined. The results showed that exposure to Imergard and Celite killed 50% of adult sand flies in 13.08 and 7.57 hours, respectively. The biominerals showed promise as alternative methods for controlling sand flies and leishmaniasis disease.
Sand flies (Diptera: Psychodidae) serve as vectors for transmitting protozoan parasites, Leishmania spp., that cause the disease called leishmaniasis. The main approach to controlling sand flies is the use of chemical insecticides. The discovery of alternative methods for their control is needed because of potential health risks of chemical insecticides and development of sand fly resistance to these pesticides. The biomineral produced by diatoms (diatomaceous earth, DE; Celite) and a volcanic glass bio-mimic (Imergard) have been shown by our group to be efficacious against mosquitoes, filth flies, and ticks but never studied for the control of sand flies. In a modifiedWorld Health Organization cone test, 50% of adult Phlebotomus papatasi sand flies at 29 +/- 1 degrees C, 55 +/- 5% RH, and 12:12 LD, when exposed to Imergard and Celite, were dead in 13.08 and 7.57 h, respectively. Proof of concept was established for the use of these biominerals for sand fly and leishmaniasis disease control. Using a light source as an attractant to the minerals had no significant effect on the LT50, the time to 50% mortality. The LT50 at a higher relative humidity of 70 +/- 5% increased to 20.91 and 20.56 h for Imergard and Celite, respectively, suggesting their mode of action was dehydration. Scanning electron microscopy of dead sand flies showed high coating levels of Celite only on the sides of the thorax and on the tarsi, suggesting an alternative mode of action for mechanical insecticides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据