4.7 Article

Single neurons on microelectrode array chip: manipulation and analyses

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fbioe.2023.1258626

关键词

single-cell manipulation; microelectrode array; dielectrophoresis; electrophysiology; single neurons; network of neurons

向作者/读者索取更多资源

In this study, a precise intercellular interaction model was built using a microelectrode array-based and dielectrophoresis-driven single-cell manipulation chip. The chip enabled precise manipulation of single cells and investigation of the effects of electric field on cells. The functionality of the chip was demonstrated by recording electrophysiology of single neurons and networks of neurons differentiated from human induced pluripotent stem cells.
Chips-based platforms intended for single-cell manipulation are considered powerful tools to analyze intercellular interactions and cellular functions. Although the conventional cell co-culture models could investigate cell communication to some extent, the role of a single cell requires further analysis. In this study, a precise intercellular interaction model was built using a microelectrode array [microelectrode array (MEA)]-based and dielectrophoresis-driven single-cell manipulation chip. The integrated platform enabled precise manipulation of single cells, which were either trapped on or transferred between electrodes. Each electrode was controlled independently to record the corresponding cellular electrophysiology. Multiple parameters were explored to investigate their effects on cell manipulation including the diameter and depth of microwells, the geometry of cells, and the voltage amplitude of the control signal. Under the optimized microenvironment, the chip was further evaluated using 293T and neural cells to investigate the influence of electric field on cells. An examination of the inappropriate use of electric fields on cells revealed the occurrence of oncosis. In the end of the study, electrophysiology of single neurons and network of neurons, both differentiated from human induced pluripotent stem cells (iPSC), was recorded and compared to demonstrate the functionality of the chip. The obtained preliminary results extended the nature growing model to the controllable level, satisfying the expectation of introducing more elaborated intercellular interaction models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据