4.7 Article

Healing cracks in additively manufactured NiTi shape memory alloys

期刊

VIRTUAL AND PHYSICAL PROTOTYPING
卷 18, 期 1, 页码 -

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/17452759.2023.2246437

关键词

Laser powder bed fusion; spark plasma sintering; NiTi alloys; superelasticity; healing crack; >

向作者/读者索取更多资源

Through spark plasma sintering (SPS) method, directional cracks in [001] textured L-PBF NiTi shape memory alloy were successfully repaired, resulting in improved mechanical properties and superelasticity, addressing the limitations of hot cracking.
The pursuit of enhancing NiTi superelasticity through laser powder bed fusion (L-PBF) and [001] texture creation poses a challenge due to increased susceptibility to hot cracking in the resulting microstructure with columnar grains. This limitation restricts NiTi's application and contributes to material waste. To overcome this, we introduce a pioneering approach: utilising spark plasma sintering (SPS) to heal directional cracks in [001] textured L-PBF NiTi shape memory alloy. Diffusion bonding and oxygen utilisation for Ti2NiOx formation was found to successfully heal the cracks. SPS enhances mechanical properties, superelasticity at higher temperatures, and two-way shape memory strain during thermomechanical cycling. This work provides an alternative solution for healing cracks in L-PBF parts, enabling the sustainable reuse of cracked materials. By implementing SPS, this approach effectively addresses hot cracking limitations, expanding the application potential of L-PBF NiTi parts while improving their functional and mechanical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据