4.8 Article

3D printing of high-temperature thick film platinum resistance temperature detector array

期刊

ADDITIVE MANUFACTURING
卷 73, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2023.103654

关键词

Array; High-temperature; 3D printing; Thick film; Platinum

向作者/读者索取更多资源

In this study, a high-temperature thick film platinum (Pt) RTD array based on 3D printing technology is presented for high-temperature field measurement sensing applications at 50-800 degrees C. The analysis of microstructure, phase composition, and electrical properties revealed three stages of Pt film sintering during the sintering process. The printed Pt films, confirmed to contain glass powder, exhibit excellent anti-aggregation and high-temperature properties compared to sputtered films. The resulting Pt RTD array shows outstanding stability (drift rate of 0.07%/h at 800 degrees C) and high accuracy (0.75% fullscale), and can realize temperature gradient monitoring of a two-dimensional temperature field. The potential applications of the Pt RTD array, including bolt and rocket engine tester exhaust flame temperature monitoring, were demonstrated. This study paves the way for printing RTD arrays directly on curved parts.
Dynamic high-temperature field measurements have garnered substantial interest for various promising applications, such as the health monitoring of aviation components. 3D printing offers unprecedented opportunities for the development of curved structure-function integrated sensors. However, most current resistance temperature detector (RTD) arrays based on 3D printing technology work well only within a narrow temperature range. Their application at high temperatures remains a significant challenge because of the lack of efficient manufacturing processes. Herein, a high-temperature thick film platinum (Pt) RTD array is presented based on 3D printing technology, suitable for high-temperature field measurement sensing applications at 50-800 degrees C. Three stages of Pt film sintering were revealed through the analysis of the microstructure, phase composition, and electrical properties during the sintering process. Compared to sputtered films, printed Pt films, which are confirmed to contain glass powder, exhibit excellent anti-aggregation and high-temperature properties. The resulting Pt RTD array shows outstanding stability (drift rate of 0.07%/h at 800 degrees C), high accuracy (0.75% fullscale), and can realize temperature gradient monitoring of a two-dimensional temperature field. The potential applications of the Pt RTD array, including bolt and rocket engine tester exhaust flame temperature monitoring, were demonstrated. This study paves the way for printing RTD arrays directly on curved parts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据