4.8 Article

3D-printed polylactide composites reinforced with short lyocell fibres - Enhanced mechanical properties based on bio-inspired fibre fibrillation and post-print annealing

期刊

ADDITIVE MANUFACTURING
卷 77, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2023.103806

关键词

Bio-composite; Additive manufacturing; Regenerated cellulose; Fibre modification

向作者/读者索取更多资源

This study demonstrates a method to improve the mechanical performance and thermo-mechanical stability of 3D printable polylactide (PLA) composites by incorporating fibres and increasing PLA crystallinity through heat treatment.
In this study, 3D printable polylactide (PLA) composites reinforced with 10, 20 and 30 mass% of short lyocell fibres were produced by melt compounding PLA modified with maleic anhydride. Based on bio-inspired anchoring systems, fibrillated fibres were also employed in 30 mass% fibre composites. The resulting 3D printed samples displayed outstanding mechanical performance, particularly with high fibre content. Compared to neat PLA, unmodified formulations showed reduced tensile strength and strain at break with the addition of fibres, but they had a moderate improvement in Young's modulus. However, by combining fibre fibrillation, matrix modification, and post-printing annealing, we achieved an excellent balance of tensile strength (85 MPa), Young's modulus (7.2 GPa), and strain at break (3.2%) -the highest reported values for such composites. Incorporating fibres and increasing PLA crystallinity via heat treatment significantly enhanced the thermo-mechanical stability of the composites, raising the storage modulus up to 38 times at 60 degrees C and 200 times at 80 degrees C compared to neat PLA. This combined strategy paves the way for the 3D printing of high-performance structures using 100% bio-derived materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据