4.7 Article

Estradiol mediates colonic epithelial protection in aged mice after stroke and is associated with shifts in the gut microbiome

期刊

GUT MICROBES
卷 15, 期 2, 页码 -

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/19490976.2023.2271629

关键词

Ischemic stroke; gut epithelium; gut-brain axis; sex differences; aging

向作者/读者索取更多资源

This study investigates the host defense responses at the colonic epithelial surface after stroke and discovers that there are sex differences in these responses. Antimicrobial proteins significantly increase in young male mice, while mucin-related genes are enhanced in young female mice, helping to maintain distance between the host and gut bacteria. Ovariectomy can reverse the sex-specific defense responses in young female mice. Estradiol replacement in aged female mice increases mucin gene expression and reduces stroke-associated neuronal hyperactivity, which is related to the composition of gut microbiota.
The gut is a major source of bacteria and antigens that contribute to neuroinflammation after brain injury. Colonic epithelial cells (ECs) are responsible for secreting major cellular components of the innate defense system, including antimicrobial proteins (AMP) and mucins. These cells serve as a critical regulator of gut barrier function and maintain host-microbe homeostasis. In this study, we determined post-stroke host defense responses at the colonic epithelial surface in mice. We then tested if the enhancement of these epithelial protective mechanisms is beneficial in young and aged mice after stroke. AMPs were significantly increased in the colonic ECs of young males, but not in young females after experimental stroke. In contrast, mucin-related genes were enhanced in young females and contributed to mucus formation that maintains the distance between the host and gut bacteria. Bacterial community profiling was done using universal amplification of 16S rRNA gene sequences. The sex-specific colonic epithelial defense responses after stroke in young females were reversed with ovariectomy and led to a shift from a predominately mucin response to the enhanced AMP expression seen in males after stroke. Estradiol (E2) replacement prior to stroke in aged females increased mucin gene expression in the colonic ECs. Interestingly, we found that E2 treatment reduced stroke-associated neuronal hyperactivity in the insular cortex, a brain region that interacts with visceral organs such as the gut, in parallel to an increase in the composition of Lactobacillus and Bifidobacterium in the gut microbiota. This is the first study demonstrating sex differences in host defense mechanisms in the gut after brain injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据