4.8 Article

Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining

期刊

NATURE CELL BIOLOGY
卷 19, 期 1, 页码 68-75

出版社

NATURE PORTFOLIO
DOI: 10.1038/ncb3450

关键词

-

资金

  1. NIH [GM029513, HG007852]
  2. Ludwig Institute for Cancer Research
  3. Howard Hughes Medical Institute
  4. Cancer Cell Biology Training Grant from the NCI [5T32CA067754-18]
  5. Hope Funds for Cancer Research [HFCR-14-06-06]

向作者/读者索取更多资源

Chromosome missegregation into a micronucleus can cause complex and localized genomic rearrangements(1,2) known as chromothripsis(3), but the underlying mechanisms remain unresolved. Here we developed an inducible Y centromere-selective inactivation strategy by exploiting a CENP-A/histone H3 chimaera to directly examine the fate of missegregated chromosomes in otherwise diploid human cells. Using this approach, we identified a temporal cascade of events that are initiated following centromere inactivation involving chromosome missegregation, fragmentation, and re-ligation that span three consecutive cell cycles. Following centromere inactivation, a micronucleus harbouring the Y chromosome is formed in the first cell cycle. Chromosome shattering, producing up to 53 dispersed fragments from a single chromosome, is triggered by premature micronuclear condensation prior to or during mitotic entry of the second cycle. Lastly, canonical non-homologous end joining (NHEJ), but not homology-dependent repair, is shown to facilitate re-ligation of chromosomal fragments in the third cycle. Thus, initial errors in cell division can provoke further genomic instability through fragmentation of micronuclear DNAs coupled to NHEJ-mediated reassembly in the subsequent interphase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据