4.7 Article

An Efficient Neural Network Design Incorporating Autoencoders for the Classification of Bat Echolocation Sounds

期刊

ANIMALS
卷 13, 期 16, 页码 -

出版社

MDPI
DOI: 10.3390/ani13162560

关键词

bat echolocation sound analysis; bat species classification; machine learning; convolutional neural network; autoencoder; clustering; animal population monitoring

向作者/读者索取更多资源

Bats are essential bioindicators of environmental changes and an automated acoustic monitoring method using neural networks is developed to classify bat genera and species, providing insights into bat conservation and wind energy applications.
Bats are widely distributed around the world, have adapted to many different environments and are highly sensitive to changes in their habitat, which makes them essential bioindicators of environmental changes. Passive acoustic monitoring over long durations, like months or years, accumulates large amounts of data, turning the manual identification process into a time-consuming task for human experts. Automated acoustic monitoring of bat activity is therefore an effective and necessary approach for bat conservation, especially in wind energy applications, where flying animals like bats and birds have high fatality rates. In this work, we provide a neural-network-based approach for bat echolocation pulse detection with subsequent genus classification and species classification under real-world conditions, including various types of noise. Our supervised model is supported by an unsupervised learning pipeline that uses autoencoders to compress linear spectrograms into latent feature vectors that are fed into a UMAP clustering algorithm. This pipeline offers additional insights into the data properties, aiding in model interpretation. We compare data collected from two locations over two consecutive years sampled at four heights (10 m, 35 m, 65 m and 95 m). With sufficient data for each labeled bat class, our model is able to comprehend the full echolocation soundscape of a species or genus while still being computationally efficient and simple by design. Measured classification F1 scores in a previously unknown test set range from 92.3% to 99.7% for species and from 94.6% to 99.4% for genera.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据