4.8 Article

m6A RNA methylation promotes XIST-mediated transcriptional repression

期刊

NATURE
卷 537, 期 7620, 页码 369-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature19342

关键词

-

资金

  1. NIH [R01CA186702, T32CA062948, T32GM07616, DP5OD012190]
  2. Rose Hills Foundation
  3. Edward Mallinckrodt Foundation
  4. Sontag Foundation
  5. Searle Scholars Program
  6. Pew-Stewart Scholars program
  7. California Institute of Technology

向作者/读者索取更多资源

The long non-coding RNA X-inactive specific transcript (XIST) mediates the transcriptional silencing of genes on the X chromosome. Here we show that, in human cells, XIST is highly methylated with at least 78 N-6-methyladenosine (m(6)A) residues-a reversible base modification of unknown function in long non-coding RNAs. We show that m(6)A formation in XIST, as well as in cellular mRNAs, is mediated by RNA-binding motif protein 15 (RBM15) and its paralogue RBM15B, which bind the m(6)A-methylation complex and recruit it to specific sites in RNA. This results in the methylation of adenosine nucleotides in adjacent m(6)A consensus motifs. Furthermore, we show that knockdown of RBM15 and RBM15B, or knockdown of methyltransferase like 3 (METTL3), an m(6)A methyltransferase, impairs XIST-mediated gene silencing. A systematic comparison of m(6)A-binding proteins shows that YTH domain containing 1 (YTHDC1) preferentially recognizes m(6)A residues on XIST and is required for XIST function. Additionally, artificial tethering of YTHDC1 to XIST rescues XIST-mediated silencing upon loss of m(6)A. These data reveal a pathway of m(6)A formation and recognition required for XIST-mediated transcriptional repression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据