4.6 Article

Impact of Deep Eutectic Solvents on Kinetics and Folding Stability of Formate Dehydrogenase

期刊

PROCESSES
卷 11, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/pr11102815

关键词

catalytic efficiency; deep eutectic solvents; thermal stability; unfolding reversibility

向作者/读者索取更多资源

This study evaluated the effects of various co-solvents and deep eutectic solvents (DESs) on the kinetics and stability of Candida boidinii Formate dehydrogenase. The results showed that certain co-solvents and DESs enhanced the catalytic efficiency and thermal protection of the enzyme. Additionally, DESs improved the NAD+ binding affinity of the enzyme.
Specifically designed co-solvent mixtures are an efficient way to enhance the kinetics of enzyme-catalyzed reactions without compromising enzyme stability; among them, several deep eutectic solvents have emerged as exciting co-solvent mixtures for biocatalytic reactions. DESs nature allows one to tailor the enzyme-co-solvent interactions by using DESs constituents of diverse functional groups. In this work, the influence of co-solvents (betaine, glycerol, and sorbitol) and two DESs (betaine:glycerol and betaine:sorbitol) on the kinetics of candida boidinii Formate dehydrogenase was evaluated. The results showed a 30% increase in catalytic efficiency by adding 15 wt.-% of betaine to the buffered aqueous reaction media. Further, cbFDH folded-state stability was evaluated using differential scanning fluorimetry to finally obtain the binding affinity, unfolding curves, and thermodynamic unfolding parameters. The addition of glycerol, sorbitol, and DESs increased cbFDH protection against thermal stress, and this effect could be improved by increasing co-solvent concentrations. Moreover, DESs showed the ability to reduce the irreversibility of the unfolding process. Betaine was the only co-solvent that had a negative stability effect, which was offset by using betaine-based DESs. The latter was a result of the additivity of certain individual co-solvent effects on thermal stability. Non-monotonous stability effects were obtained by adding sorbitol to the buffer solutions, probably because hydrogen bond dynamics between cbFDH/co-solvent/water change dramatically with the amount of water present. Finally, DESs improved NAD+ binding affinity with cbFDH interestingly without direct correlation with the results obtained for kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据