4.8 Article

Seasonality of temperate forest photosynthesis and daytime respiration

期刊

NATURE
卷 534, 期 7609, 页码 680-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/nature17966

关键词

-

资金

  1. US Department Of Energy (DOE), Office of Science, Terrestrial Ecosystem Science (TES) program [DE-SC0006741]
  2. Agnese Nelms Haury Program in Environment and Social Justice at the University of Arizona
  3. National Science Foundation (NSF)
  4. DOE TES program
  5. NSF LTER program
  6. U.S. Department of Energy (DOE) [DE-SC0006741] Funding Source: U.S. Department of Energy (DOE)
  7. Direct For Biological Sciences
  8. Division Of Environmental Biology [1237491] Funding Source: National Science Foundation

向作者/读者索取更多资源

Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration(1). Understanding what controls these two biological fluxes is therefore crucial to predicting climate change(2). Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines(3), presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction(4,5) and of remote sensing indices of global biosphere productivity(5,6). Here, we use new isotopic instrumentation(7) to determine ecosystem photosynthesis and daytime respiration(8) in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light(9-11) at the ecosystem scale. Because they do not capture this effect, standard approaches(12,13) overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据