4.6 Article

Microglia Depletion Attenuates the Pro-Resolving Activity of the Formyl Peptide Receptor 2 Agonist AMS21 Related to Inhibition of Inflammasome NLRP3 Signalling Pathway: A Study of Organotypic Hippocampal Cultures

期刊

CELLS
卷 12, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/cells12212570

关键词

formyl peptide receptor 2; ureidopropanamide agonist; neuroinflammation; lipopolysaccharide; inflammasome NLPR3-related pathway; hippocampus

向作者/读者索取更多资源

Microglial cells play a significant role in maintaining homeostasis and resolving inflammation. The study found that a new ureidopropanamide agonist, AMS21, has protective and anti-inflammatory effects in LPS-stimulated hippocampal cells. These effects are mediated through the FPR2 receptor specifically located on microglial cells.
Microglial cells have been demonstrated to be significant resident immune cells that maintain homeostasis under physiological conditions. However, prolonged or excessive microglial activation leads to disturbances in the resolution of inflammation (RoI). Formyl peptide receptor 2 (FPR2) is a crucial player in the RoI, interacting with various ligands to induce distinct conformational changes and, consequently, diverse biological effects. Due to the poor pharmacokinetic properties of endogenous FPR2 ligands, the aim of our study was to evaluate the pro-resolving effects of a new ureidopropanamide agonist, compound AMS21, in hippocampal organotypic cultures (OHCs) stimulated with lipopolysaccharide (LPS). Moreover, to assess whether AMS21 exerts its action via FPR2 specifically located on microglial cells, we conducted a set of experiments in OHCs depleted of microglial cells using clodronate. We demonstrated that the protective and anti-inflammatory activity of AMS21 manifested as decreased levels of lactate dehydrogenase (LDH), nitric oxide (NO), and proinflammatory cytokines IL-1 beta and IL-6 release evoked by LPS in OHCs. Moreover, in LPS-stimulated OHCs, AMS21 treatment downregulated NLRP3 inflammasome-related factors (CASP1, NLRP3, PYCARD) and this effect was mediated through FPR2 because it was blocked by the FPR2 antagonist WRW4 pre-treatment. Importantly this beneficial effect of AMS21 was only observed in the presence of microglial FPR2, and absent in OHCs depleted with microglial cells using clodronate. Our results strongly suggest that the compound AMS21 exerts, at nanomolar doses, protective and anti-inflammatory properties and an FPR2 receptor located specifically on microglial cells mediates the anti-inflammatory response of AMS21. Therefore, microglial FPR2 represents a promising target for the enhancement of RoI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据