4.6 Article

Morphology of Neutrophils during Their Activation and NETosis: Atomic Force Microscopy Study

期刊

CELLS
卷 12, 期 17, 页码 -

出版社

MDPI
DOI: 10.3390/cells12172199

关键词

neutrophils; AFM; CLSM; NET; nanostructures; membrane; nucleus; cell fragments; A23187; PMA

向作者/读者索取更多资源

Confocal microscopy and fluorescence staining are commonly used to study neutrophil activation and NETosis, but they cannot reveal the specific membrane surface characteristics of neutrophils. This study used atomic force microscopy (AFM) to reveal the topography and nanosurface characteristics of neutrophils during activation and NETosis. Changes in neutrophil membrane nanosurface parameters were quantified and compared with confocal laser-scanning microscopy (CLSM) images for identification and analysis.
Confocal microscopy and fluorescence staining of cellular structures are commonly used to study neutrophil activation and NETosis. However, they do not reveal the specific characteristics of the neutrophil membrane surface, its nanostructure, and morphology. The aim of this study was to reveal the topography and nanosurface characteristics of neutrophils during activation and NETosis using atomic force microscopy (AFM). We showed the main stages of neutrophil activation and NETosis, which include control cell spreading, cell fragment formation, fusion of nuclear segments, membrane disruption, release of neutrophil extracellular traps (NETs), and final cell disintegration. Changes in neutrophil membrane nanosurface parameters during activation and NETosis were quantified. It was shown that with increasing activation time there was a decrease in the spectral intensity of the spatial periods. Exposure to the activator A23187 resulted in an increase in the number and average size of cell fragments over time. Exposure to the activators A23187 and PMA (phorbol 12-myristate 13-acetate) caused the same pattern of cell transformation from spherical cells with segmented nuclei to disrupted cells with NET release. A23187 induced NETosis earlier than PMA, but PMA resulted in more cells with NETosis at the end of the specified time interval (180 min). In our study, we used AFM as the main research tool. Confocal laser-scanning microscopy (CLSM) images are provided for identification and detailed analysis of the phenomena studied. In this way, we exploited the advantages of both techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据