4.6 Article

Novel Multiparametric Magnetic Resonance Imaging-Based Deep Learning and Clinical Parameter Integration for the Prediction of Long-Term Biochemical Recurrence-Free Survival in Prostate Cancer after Radical Prostatectomy

期刊

CANCERS
卷 15, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/cancers15133416

关键词

prostate cancer; radical prostatectomy; biochemical recurrence; survival prediction; magnetic resonance imaging; radiomics; deep learning

类别

向作者/读者索取更多资源

By leveraging recent advances in deep learning, our study successfully predicted biochemical recurrence after prostate surgery using multiparametric magnetic resonance imaging combined with clinical variables. Our method outperformed existing methods, providing better patient care through individualized medical imaging.
Simple Summary Existing research on predicting biochemical recurrence after prostate surgery has been insufficient. Here, we aimed to predict biochemical recurrence after radical prostatectomy leveraging recent advances in deep learning. We combined clinical variables with multiparametric magnetic resonance imaging using deep learning methods. Our method performed better than existing methods. Our method could direct patients to individualized care using routine medical imaging and could achieve better patient care. Radical prostatectomy (RP) is the main treatment of prostate cancer (PCa). Biochemical recurrence (BCR) following RP remains the first sign of aggressive disease; hence, better assessment of potential long-term post-RP BCR-free survival is crucial. Our study aimed to evaluate a combined clinical-deep learning (DL) model using multiparametric magnetic resonance imaging (mpMRI) for predicting long-term post-RP BCR-free survival in PCa. A total of 437 patients with PCa who underwent mpMRI followed by RP between 2008 and 2009 were enrolled; radiomics features were extracted from T2-weighted imaging, apparent diffusion coefficient maps, and contrast-enhanced sequences by manually delineating the index tumors. Deep features from the same set of imaging were extracted using a deep neural network based on pretrained EfficentNet-B0. Here, we present a clinical model (six clinical variables), radiomics model, DL model (DLM-Deep feature), combined clinical-radiomics model (CRM-Multi), and combined clinical-DL model (CDLM-Deep feature) that were built using Cox models regularized with the least absolute shrinkage and selection operator. We compared their prognostic performances using stratified fivefold cross-validation. In a median follow-up of 61 months, 110/437 patients experienced BCR. CDLM-Deep feature achieved the best performance (hazard ratio [HR] = 7.72), followed by DLM-Deep feature (HR = 4.37) or RM-Multi (HR = 2.67). CRM-Multi performed moderately. Our results confirm the superior performance of our mpMRI-derived DL algorithm over conventional radiomics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据