4.8 Article

Atoh1 drives the heterogeneity of the pontine nuclei neurons and promotes their differentiation

期刊

SCIENCE ADVANCES
卷 9, 期 26, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.adg1671

关键词

-

向作者/读者索取更多资源

The transcription factor Atoh1 plays a crucial role in the development and function of PN neurons, as revealed by single-cell RNA sequencing. The study also uncovers six previously unknown PN subtypes and demonstrates their differential vulnerability to loss of Atoh1 function.
Pontine nuclei (PN) neurons mediate the communication between the cerebral cortex and the cerebellum to refine skilled motor functions. Prior studies showed that PN neurons fall into two subtypes based on their anatomic location and region-specific connectivity, but the extent of their heterogeneity and its molecular drivers remain unknown. Atoh1 encodes a transcription factor that is expressed in the PN precursors. We previously showed that partial loss of Atoh1 function in mice results in delayed PN development and impaired motor learning. In this study, we performed single-cell RNA sequencing to elucidate the cell state-specific functions of Atoh1 during PN development and found that Atoh1 regulates cell cycle exit, differentiation, migration, and survival of PN neurons. Our data revealed six previously not known PN subtypes that are molecularly and spatially distinct. We found that the PN subtypes exhibit differential vulnerability to partial loss of Atoh1 function, providing insights into the prominence of PN phenotypes in patients with ATOH1 missense mutations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据