4.4 Article

Bag-mediated film atomization in a cough machine

期刊

PHYSICAL REVIEW FLUIDS
卷 8, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.8.074802

关键词

-

向作者/读者索取更多资源

We use experiments and numerical computations to study the fluid mechanical processes involved in the generation of bioaerosols during forceful respiratory maneuvers like coughing or sneezing. By performing analogous experiments on a cough machine, we observe the disintegration of a thin liquid film into small droplets and identify that aerosol generation is mediated by the formation of inflated baglike structures. The breakup of these bags is triggered by retracting holes on the surface, and the dynamics and stability of the liquid rims bounding these holes play a key role in the cascade from inflated bags to droplets. The viscosity of the fluid also affects the fragmentation process, with more viscous films producing smaller droplets.
We combine experiments and numerical computations to examine underlying fluid mechanical processes associated with bioaerosol generation during violent respiratory maneuvers, such as coughing or sneezing. Analogous experiments performed in a cough machine-consisting of a strong shearing airflow over a thin liquid film-allow us to illustrate the changes in film topology as it disintegrates into small droplets. We identify that aerosol generation during the shearing of the liquid film is mediated by the formation of inflated baglike structures. The breakup of these bags is triggered by the appearance of retracting holes that puncture the bag surface. Consequently, the cascade from inflated bags to droplets is primarily controlled by the dynamics and stability of liquid rims bounding these retracting holes. We also reveal the key role of fluid viscosity in the overall fragmentation process. It is shown that more viscous films when sheared produce smaller droplets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据