4.6 Article

Small-Molecule Probe-Induced In Situ-Sensitized Photoelectrochemical Biosensor for Monitoring & alpha;-Glucosidase Activity

期刊

ACS SENSORS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.3c01269

关键词

photoelectrochemical biosensor; in situ sensitization; small-molecule probe; & alpha;-glucosidase; carbon nitride

向作者/读者索取更多资源

In this study, an in situ-sensitized photoelectrochemical biosensor using a small-molecule probe was developed for accurate detection of a-glucosidase activity. The in situ sensitization approach enhanced the light-harvesting property and photoexcited carrier separation efficiency, resulting in excellent accuracy, a low detection limit, and outstanding anti-interference ability.
Semiconductor-based photoelectrochemical (PEC) biosensors have garnered significant attention in the field of disease diagnosis and treatment. However, the recognition units of these biosensors are mainly limited to bioactive macromolecules, which hinder the photoelectric response due to their insulating characteristics. In this study, we develop an in situ-sensitized strategy that utilizes a small-molecule probe at the interface of the photoelectrode to accurately detect a-glucosidase (a-Glu) activity. Silane, a prototype small-molecule probe, was surface-modified on graphitic carbon nitride to generate Si nanoparticles upon reacting with hydroquinone, the enzymatic product of a-Glu. The in situ formed heterojunction enhances the light-harvesting property and photoexcited carrier separation efficiency. As a result, the in situ-sensitized PEC biosensor demonstrates excellent accuracy, a low detection limit, and outstanding anti-interference ability, showing good applicability in evaluating a-Glu activity and its inhibitors in human serum samples. This novel in situ sensitization approach using small-molecule probes opens up new avenues for developing simple and efficient PEC biosensing platforms by replacing conventional biorecognition elements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据