4.7 Article

Zinc oxide enhanced the antibacterial efficacy of biodegradable PBAT/PBS nanocomposite films: Morphology and food packaging properties

期刊

FOOD BIOSCIENCE
卷 55, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.fbio.2023.103077

关键词

Metal oxide; Food packaging; Active packaging; Antimicrobial; Nanocomposite

向作者/读者索取更多资源

Enhancing the antimicrobial functions of biodegradable polyesters by adding zinc oxide nanoparticles and optimizing the molecular orientation of the polymer can improve the mechanical properties of the material and produce sustainable active nanocomposite packaging.
Enhancing the antimicrobial functions of biodegradable polyesters facilitates the utilization of sustainable food packaging. Poly(butylene succinate) (PBS) and polybutylene adipate terephthalate (PBAT) blends were compounded with zinc oxide (ZnO) nanoparticles (up to 4.5%) into a master batch via twin-screw extrusion. Biodegradable films were produced via cast extrusion, and the morphologies and packaging properties were determined. Adding ZnO nanoparticles up to 2.7% modified the film's surface topography, causing non homogeneity and voids. ZnO tended to form aggregates at higher loading, while phase separation of metal oxide from PBAT/PBS matrices occurred. Dispersion of ZnO nanoparticles reduced water vapor permeability, with the lowest effects on oxygen permeability. Adding ZnO in combination with the molecular orientation of the polymer effectively reinforced the matrices and improved the mechanical properties of PBAT/PBS blends. PBAT/ PBS/ZnO films exhibited antimicrobial capacity against Escherichia coli and Bacillus cereus. PBAT/PBS with ZnO >2.7% delayed discoloration of red pigments in packaged minced pork due to efficient inhibition of microbial growth and UV blocking. ZnO-loaded polyester enhanced antimicrobial functions, producing sustainable active nanocomposite packaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据