4.7 Article

Suppression of mechanical instability in bioabsorbable ultrafine-grained Zn through in-situ stabilization by ZnO nanodispersoids

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmrt.2023.06.252

关键词

Bioabsorbable; In-vitro; Mechanical properties; Metal matrix composite (MMC); Zinc (Zn); Zinc oxide (ZnO)

向作者/读者索取更多资源

The issue of intrinsic microstructural and mechanical instability of Zn-based metals limits their expansion in potential applications of bioresorbable stents and orthopedic fixators. A new concept of stabilization of Zn microstructure by a small fraction of nontoxic nano-metric ZnO dispersoids is proposed for the first time and demonstrated on the particular bioabsorbable model material. The effect of the ZnO dispersoids on post-processing microstructural stability, deformation and strengthening mechanisms, corrosion, and in-vitro biological behavior are pursued.
The issue of intrinsic microstructural and mechanical instability of Zn-based metals limits their expansion in potential applications of bioresorbable stents and orthopedic fixators. A new concept of stabilization of Zn microstructure by a small fraction of nontoxic nano-metric ZnO dispersoids is proposed for the first time and demonstrated on the particular bioabsorbable model material. The effect of the ZnO dispersoids on post-processing microstructural stability, deformation and strengthening mechanisms, corrosion, and in -vitro biological behavior are pursued. The ZnO dispersoids arise in situ within deformed Zn structure during the consolidation of fine atomized Zn 99.99wt.% powder by hydro-extrusion. ZnO nanodispersoids (4.75 vol.%;-136 nm) form from passivating films pre-sent on Zn. They allow formation of ultrafine-grained Zn structure with an average grain size of-750 nm and its retention by Zener pinning action during annealing held at 100 degrees C. The model Zn + ZnO composite shows the superior mechanical properties than those reported for pure Zn materials. The utilized stabilization concept doesn't compromise corrosion and biological responses. Immersion of the Zn + ZnO in DMEM results in a corrosion rate, which complies with the desirable standard rate for biodegradable materials. Electrochemical tests suggest that the Zn + ZnO reaches a similar degradation rate after the first week of immersion and a more uniform corrosion behavior compared to the cast Zn reference. In-vitro cyto/genotoxicity assays performed using DMEM diluted extracts of the Zn + ZnO and cast Zn incubated with L929 cells yield in comparable and non-toxic responses. The presence of ZnO dispersoids induces a small but still significant bacteriostatic activity.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据