4.7 Article

Phase field simulation of eutectoid microstructure during austenite-pearlite phase transformation

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmrt.2023.09.201

关键词

Phase-field simulation; Austenite-pearlite transformation; Cooling rate; Isothermal temperature; Mn content

向作者/读者索取更多资源

In this study, the austenitic-pearlite transformation and its effects on microstructure evolution were investigated using a CALPHAD-based model. The results showed that the isothermal transformation temperature, cooling rate, and Mn content significantly influenced the pearlite transformation process, and the multi-component diffusion played a critical role in pearlite growth.
Pearlitic steel, known for its superior strength, plasticity and wear resistance, is widely used in diverse applications including light rail, spring production, wire manufacturing, high-rise constructions, etc. The pearlite phase transformation involves a complex transformation process of three phases and two interfaces, and its phase transformation process and complex physical nature necessitate further exploration and study. In this work, the austenitic-pearlite transformation in Fe-0.77C wt.% binary alloys and Fe-0.7C-xMn (x 1/4 0.1, 0.2, 0.3) wt.% ternary alloys were examined by using a CALPHAD-based multicomponent multi-phase-field model. The effects of isothermal transformation temperature, cooling rate, and Mn content on the microstructure evolution during the austenite-pearlite transformation were discussed. Furthermore, the multi-component diffusion is captured by phase-field modeling of the lamellar pearlite growth. The cur-rent findings offer a novel perspective for investigating the pearlite microstructure in relation to varied compositions and heat treatment processes.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据