4.5 Article

Facile Synthesis of Ultrafine and Highly Dispersible MnO2 Nanoparticles for Energy Storage in Supercapacitors

期刊

CHEMNANOMAT
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cnma.202300219

关键词

MnO2 nanoparticles; hydrothermal synthesis; high dispersibility; uniform particle size; supercapacitors

向作者/读者索取更多资源

This study presents the synthesis of ultrafine MnO2 nanoparticles with excellent dispersibility in water through a simple one-step hydrothermal route. The nanoparticles have a uniform size of 200 nm, a large specific surface area, and a high specific capacitance.
Manganese dioxide (MnO2) has been extensively investigated as an electrode material for supercapacitors because of its high theoretical capacitance, great abundance, and low toxicity. To obtain satisfactory capacitance performance, in recent years, many efforts have been dedicated to the fabrication of MnO2 nanoparticles that offer a larger specific surface area and an escalated chemical activity. Beyond them, the ideal dispersibility of nanoparticles in a liquid medium is also of vital importance when processing those powdery materials into slurry ones for some particular uses, such as editable and ink-printing supercapacitor devices. In this study, the as-synthesized ultrafine MnO2 nanoparticles having excellent dispersibility in water can be prepared via a facile one-step hydrothermal route, with a uniform size in diameter of 200 nm exhibiting a large specific surface area of similar to 389.7 m(2) g(-1), and a high specific capacitance of 135.7 F g(-1) at 5 mV s(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据