4.7 Article

Dissolved Organic Matter Fluorescence as a Tracer of Upwelling and Microbial Activities in Two Cyclonic Eddies in the Eastern Tropical North Atlantic

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2023JC019821

关键词

PARAFAC; Atlantic Ocean; Mauritanian upwelling system; mesoscale eddies; fluorescence dissolved organic matter (FDOM); DOC

向作者/读者索取更多资源

This study investigated the optical properties of dissolved organic matter in two cyclonic eddies in the Eastern Tropical North Atlantic (ETNA). The results revealed suitable indicators for tracing the transport of freshly produced organic matter and remineralized organic matter within offshore eddies.
Mesoscale eddies are frequently observed in the Eastern Tropical North Atlantic (ETNA), yet their effects on the transport and distribution of biogeochemical solutes, and specifically on the production and remineralization of dissolved organic matter (DOM) remain difficult to elucidate. Here, we investigated the submesoscale variability of chromophoric DOM (CDOM) and fluorescent DOM (FDOM) together with microbial production and remineralization processes in two cyclonic eddies (CEs) in the ETNA during summer and winter 2019. One CE, formed near the coast off Mauritania during the post-upwelling season, was sampled along a similar to 900 km zonal corridor between Mauritania and the Cape Verde Islands. The other CE, formed nearby Brava Island, was out of coastal influence. Four fluorescent components were identified with parallel factor analysis, two humic-like, and two protein-like components. Humic-like FDOM components correlated to optode-based community respiration and were also good indicators of upwelling associated with the Brava Island CE as they correlated to physical parameters (e.g., temperature) and to dissolved inorganic nitrogen. The tryptophan-like FDOM components correlated with the carbon and nitrogen content of semi-labile DOM, phytoplankton biomass, community respiration, and bacterial production. Overall, our study revealed that DOM optical properties are suitable for tracing freshly produced organic matter and the transport of remineralized DOM within offshore eddies. Plain Language Summary Mesoscale eddies are ubiquitous circulation features in the ocean with horizontal scales on the order of 100 km and lifetimes of days to months. Their swirling motion can cause nutrients from deeper waters to be transported to the surface, stimulating phytoplankton biomass and resulting in the production of dissolved organic matter. However, these effects are difficult to quantify and proxies (biomarkers) are needed to monitor the impact of eddies at high resolution. In this work, we used the optical properties of the dissolved organic matter, especially the fraction capable of fluorescence (FDOM) as biomarker in two cyclonic eddies, one formed in an eastern boundary upwelling system and one formed offshore by winds/Island interaction. We identified four FDOM components, among which an indicator of cyclonic eddy productivity and two indicators of dissolved organic matter recycling, which also tracked nutrient transport in the offshore cyclonic eddy. Our study highlights that continuous FDOM data obtained with sensors could help to follow eddy development and influence on seawater biogeochemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据