4.6 Article

Effects of Zinc and Strontium Doping on In Vitro Osteogenesis and Angiogenesis of Calcium Silicate/Calcium Phosphate Cement

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.3c00193

关键词

calcium phosphate cement; calcium silicate; ion doping; osteogenesis; angiogenesis

向作者/读者索取更多资源

In this study, Zn/Sr-doped calcium silicate/calcium phosphate cements were prepared to enhance bone regeneration. The doping of Zn and Sr had little effect on the physicochemical properties of the cements, but it significantly promoted osteogenesis. Among the different compositions, 10Zn/20Sr-CS/CPC showed the best in vitro osteogenic performance.
Based on multiple biological functions (mainly osteogenesis and angiogenesis) of bioactive ions, Zn/Sr-doped calcium silicate/calcium phosphate cements (Zn/Sr-CS/CPCs, including 10Zn-CS/CPC, 20Sr-CS/CPC, and 10Zn/20Sr-CS/CPC) were prepared by the addition of Zn and Sr dual active ions into CS/CPC to further accelerate its bone regeneration in this study. The physicochemical and biological properties of the Zn/Sr-CS/CPCs were systematically investigated. The results showed that the setting time was slightly prolonged, the compressive strength and porosity did not change much, and all groups maintained good injectability after the doping of Zn and Sr. Besides, the doping of Zn and Sr had little effect on the phase and microstructure of hydrated products of CS/CPC. The degradation rate of Zn/Sr-CS/CPCs decreased after doping with Zn and Sr. In mouse bone marrow mesenchymal stem cells (mBMSC) experiments, all Zn/Sr-CS/CPCs stimulated the viability, adhesion, proliferation, and alkaline phosphatase (ALP) activity together with osteogenesis-related genes (ALP, Runx2, Col-I, OCN, and OPN). The further addition of Zn and Sr played better and synergistic roles in in vitro osteogenesis. Thereinto, 10Zn/20Sr-CS/CPC manifested the optimum in vitro osteogenic performance. As for human umbilical vein endothelial cell (HUVEC) experiments, the incorporation of CS doped with Zn and Sr into CPC possessed good vascularization properties of proliferation, NO secretion, tube formation, and the expression of angiogenesis-related genes (VEGF, bFGF, and eNOS). In conclusion, the doping of Zn and Sr into CS/CPC could exhibit excellent osteogenesis and good angiogenesis potentials and 10Zn/20Sr-CS/CPC could be considered as a promising candidate in bone repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据