4.6 Article

Integration of the metabolome and transcriptome reveals the molecular mechanism of drought tolerance in Plumeria rubra

期刊

FRONTIERS IN GENETICS
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fgene.2023.1274732

关键词

drought tolerance; Plumeria rubra; hormone; organic acids; flavonoids

向作者/读者索取更多资源

This study investigated the molecular mechanisms of Plumeria rubra adaptation to drought stress through transcriptome and metabolomics analyses. The results showed that P. rubra first activates the plant hormone signal transduction pathway to regulate hormone contents, then accumulates osmotic regulating substances to maintain osmotic balance, and finally increases flavonoid levels to scavenge reactive oxygen species under drought stress.
Plumeria rubra L. cv. Acutifolia is an ornamental tree that displays a good drought-tolerance level. However, the molecular mechanisms of P. rubra adaptation to drought stress remains unclear. Here, drought-simulating pot experiments were conducted to explore drought stress response mechanism of P. rubra. Transcriptome analysis revealed 10,967 differentially expressed genes (DEGs), 6,498 of which were increased and 4,469 decreased. Gene Ontology (GO) analysis revealed that the DEGs were enriched in binding category, in metabolic process category, and in catalytic activities category. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 9 pathways were significantly enriched, including biosynthesis of secondary metabolites (ko01110), plant hormone signal transduction (ko04075) and so on. In addition, the transcription factor families of AP2/ERFs, bZIP, and C2H2 were significantly upregulated while the families of bHLH, MYB-related, and NAC were significantly downregulated. Moreover, the results of metabolomics analysis indicated that some compounds were accumulated under drought stress, especially flavonoids. Overall, it was speculated that under drought stress, P. rubra first activates the plant hormone signal transduction pathway to regulate hormone contents. Then osmotic regulating substances such as organic acids and amino acids are accumulated to maintain osmotic balance. Finally, flavonoid levels are increased to scavenge reactive oxygen species. These results preliminarily revealed the molecular mechanisms adopted by P. rubra in response to drought stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据