4.7 Article

The anomalous Hall effect controlled by residual epitaxial strain in antiferromagnetic Weyl semimetal Mn3Sn thin films grown by molecular beam epitaxy

期刊

RESULTS IN PHYSICS
卷 52, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.rinp.2023.106803

关键词

-

向作者/读者索取更多资源

In this study, we report the structural property of high quality Mn3Sn thin film on insulator substrate MgO(110) by molecular beam epitaxy, and the control of residual mismatch strain between Mn3Sn film and substrate on the anomalous Hall effect (AHE). Strain-free Mn3Sn(10 1 0) films or alternatively strained Mn3Sn(11 2 0) films were grown via a three-step process. The strain-free Mn3Sn film exhibits large anomalous Hall conductivity up to 30 Ω^-1cm^-1 at room temperature, comparable to bulk Mn3Sn. In contrast, AHE is switched off in strained Mn3Sn film due to piezomagnetic effect under a uniaxial compress strain of -2.0%.
The large anomalous Hall effect (AHE) in antiferromagnetic(AFM) Weyl semimetal Mn3Sn attracts intensive attentions in spintronics. Here, we report the structural property of high quality Mn3Sn thin film on insulator substrate MgO(1 1 0) by molecular beam epitaxy (MBE), and AHE in control of residual mismatch strain between Mn3Sn film and substrate. We are able to grow strain-free Mn3Sn(10 1 0) films or alternatively strained Mn3Sn(11 2 0) films via a three-step process. The strain-free Mn3Sn film has large anomalous Hall conductivity up to 30 & omega;-1cm- 1 at room temperature, which is comparable to bulk Mn3Sn. In contrast, AHE is switched off in strained Mn3Sn film due to piezomagnetic effect under a uniaxial compress strain of-2.0%. These findings provide a deeper understanding on AFM spintronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据