4.5 Article

Nanofilm-enhanced electrochemical DNA sensing: a breakthrough for yellow rust detection in wheat

期刊

MATERIALS RESEARCH EXPRESS
卷 10, 期 11, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/2053-1591/acffac

关键词

Puccinia striiformis; nickel oxide; indium tin oxide; DNA biosensor; electrochemical study

向作者/读者索取更多资源

This study develops a genosensor using a nanoscale NiO thin film for detecting DNA sequences associated with wheat yellow rust. The genosensor shows excellent sensitivity and precision, and its unique feature is the utilization of conserved sequences for the first time.
This study showcases the development of a genosensor utilizing a nanoscale NiO thin film. The genosensor is constructed on a glass substrate coated with tin-doped indium oxide (ITO) and is designed for the specific detection of DNA sequences associated with Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat yellow rust. The detection process relies on the utilization of methylene blue (MB) as an electrochemical indicator, with NiO acting as the matrix and the electrochemical measurement system serving as the transducer. Various single-stranded DNA oligonucleotide sequences related to Pst pathogenesis are employed as probes to enable sensing. The electrochemical response of the nanoscale bioelectrode is characterized and studied using two distinct electrochemical techniques, cyclic voltammetry (CV) and differential pulse voltammetry (DPV), in conjunction with a potentiostat. The detection ranges spans from 40 pg mu l-1 to 115 ng mu l-1, demonstrating a linear correlation with exceptional precision. The absence of DNA-based biosensors for the detection of Puccinia striiformis f. sp. tritici (Pst) has prompted the need for a new method to address the limitations associated with previously reported technologies. Although surface plasmon resonance (SPR) immunoassays have been reported for Pst detection, the development of DNA-based biosensors specifically tailored for Pst detection remains unexplored. Introducing a novel method aims to overcome the challenges and shortcomings of existing techniques, providing a new approach to detect and combat the devastating effects of Pst on wheat crops. By leveraging the advantages of DNA-based biosensors, such as their sensitive and precise detection capabilities, this new method seeks to enhance the accuracy and efficiency of Pst detection, ultimately contributing to the development of effective strategies for disease management and crop protection. The developed nanoscale electrochemical DNA sensor offers outstanding sensitivity, extended shelf life, and reliable recovery, effectively minimizing the likelihood of obtaining erroneous results. A significant highlight of this study is the first-time utilization of conserved sequences associated with pathogenesis in selected Pst strains for the development of a nanoscale genosensor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据