4.2 Article

Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments

期刊

JOURNAL OF SYNCHROTRON RADIATION
卷 30, 期 -, 页码 1064-1075

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S160057752300749X

关键词

machine learning; reflectometry; autonomous experiments; beamline control; XRR; closed-loop control

向作者/读者索取更多资源

Recently, there has been a growing interest in applying machine-learning techniques to automated analysis of X-ray scattering experiments. This study describes the incorporation of a combined one-dimensional convolutional neural network and multilayer perceptron for extracting physical thin-film parameters and taking prior knowledge into account. Experimental results demonstrate the accuracy and stability of this method.
Recently, there has been significant interest in applying machine-learning (ML) techniques to the automated analysis of X-ray scattering experiments, due to the increasing speed and size at which datasets are generated. ML-based analysis presents an important opportunity to establish a closed-loop feedback system, enabling monitoring and real-time decision-making based on online data analysis. In this study, the incorporation of a combined one-dimensional convolutional neural network (CNN) and multilayer perceptron that is trained to extract physical thin-film parameters (thickness, density, roughness) and capable of taking into account prior knowledge is described. ML-based online analysis results are processed in a closed-loop workflow for X-ray reflectometry (XRR), using the growth of organic thin films as an example. Our focus lies on the beamline integration of ML-based online data analysis and closed-loop feedback. Our data demonstrate the accuracy and robustness of ML methods for analyzing XRR curves and Bragg reflections and its autonomous control over a vacuum deposition setup.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据