4.5 Article

The diversification of butterfly wing patterns: progress and prospects

期刊

CURRENT OPINION IN INSECT SCIENCE
卷 61, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.cois.2023.101137

关键词

-

向作者/读者索取更多资源

Butterfly wings, with their rich phenotypic diversity and complex biological functions, serve as a crucial system for studying the genetic basis and evolution of phenotypic diversification. Recent studies have revealed the complex functions and genetic and environmental factors involved in determining wing patterns. These factors lead to inter-specific divergence, genetic polymorphism, and phenotypic plasticity, often controlled by key genes. Gene co-option has also been identified as an important mechanism for functional complexity and evolutionary novelty. However, further research is needed for a systematic and comprehensive understanding.
Butterfly wings display rich phenotypic diversity and are associated with complex biological functions, thus serving as an important evolutionary system to address the genetic basis and evolution of phenotypic diversification. We review recent butterfly studies that revealed complex functions underlying diversified wing patterns and describe the genetic and environmental factors involved in wing pattern determinations. These factors lead to inter-specific divergence, genetic polymorphism, and phenotypic plasticity, which in many cases are decided by several key genes. We also summarize the research advances on gene co-option as an important origin of functional complexity and evolutionary novelty. These findings reveal a pattern of evolutionary innovation within a constrained developmental framework during butterfly wing morphogenesis, but further research is required to gain a systematic and comprehensive understanding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据